

2019 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY

SYMPOSIUM
AUTONOMOUS GROUND SYSTEMS TECHNICAL SESSION

AUGUST 13-15, 2019 - NOVI, MICHIGAN

INTEGRATION OF THE AUTONOMOUS MOBILITY APPLIQUÉ
SYSTEM INTO THE ROBOTIC TECHNOLOGY KERNEL

David Pirozzo1, Joshua P. Hecker, PhD2, Alan Dickinson2, Tim Schulteis2,

Jeff Ratowski1, Bernard Theisen1

1U.S. Army Combat Capabilities Development Command Ground Vehicle Systems

Center, Warren, MI
2Lockheed Martin Corporation, Littleton, CO

ABSTRACT
U.S. Army Combat Capabilities Development Command (CCDC) Ground Vehicle

Systems Center (GVSC) has been managing and developing a variety of

autonomous systems throughout its existence. Two of the most important from the

past decade include the Autonomous Mobility Appliqué System (AMAS) developed

by Lockheed Martin Corporation (LMC) and the Robotic Technology Kernel (RTK)

developed by GVSC in collaboration with DCS Corp and Southwest Research

Institute (SwRI). Rather than continuing to develop and maintain two separate

autonomous software systems, GVSC has decided to integrate any capabilities that

were unique to AMAS into RTK and devote efforts to developing RTK going

forward. The goal of integrating AMAS into RTK is to leverage the best features

of each system. The process of this integration involves multiple steps. This paper

describes the historical and current efforts involved in the integration of AMAS into

RTK.

Citation: D. Pirozzo, J.P. Hecker, A. Dickinson, T. Schulteis, J. Ratowski, and B. Theisen, “Integration of the

Autonomous Mobility Appliqué System into the Robotic Technology Kernel”, In Proceedings of the Ground Vehicle

Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 13-15, 2019.

1. INTRODUCTION
The U.S. Army Combat Capabilities

Development Command (CCDC) Ground Vehicle

Systems Center (GVSC) has been managing and

developing a variety of autonomous systems

throughout its existence. Two of the most

important from the past decade include the

Autonomous Mobility Appliqué System (AMAS)

developed by Lockheed Martin Corporation (LMC)

and the Robotic Technology Kernel (RTK)

developed by GVSC in collaboration with DCS

Corp and Southwest Research Institute (SwRI).

Rather than continuing to develop and maintain two

separate autonomous software systems, GVSC has

decided to integrate any capabilities that were

unique to AMAS into RTK and devote efforts to

developing RTK going forward.

DISTRIBUTION A. Approved for public release;

distribution unlimited. OPSEC # 2502

Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Integration of the Autonomous Mobility Appliqué System into the Robotic Technology Kernel. Pirozzo, et.al.

Page 2 of 8

AMAS has focused on developing autonomous

driving capabilities for logistics vehicles. One

aspect of this is to modernize military vehicles by

providing driver warning and assist features found

on most consumer vehicles such as blind spot

detection, cruise control, lane keeping, and

collision mitigation braking. In addition to these

driver assist features, AMAS provides autonomous

driving capabilities such as teleoperation, waypoint

following, and convoy vehicle following. The

software and hardware have undergone thorough

testing, giving AMAS a high level of reliability.

RTK has been focused on developing new

perception and autonomous navigation capabilities

for smaller, more mobile vehicles. The software is

built upon the open source Robot Operating System

(ROS) which provides simple communication

mechanisms between software components and

gives developers tools for monitoring and

diagnosing the state of the system. ROS also

promotes modular design allowing for more

flexibility and reusability of individual software

components. RTK has demonstrated this by

reusing software across many different vehicles,

supporting many different programs with varying

objectives, and a quick turnaround time to integrate

new capabilities.

The goal of integrating AMAS into RTK is to

leverage the best features of each system, creating

a library of compatible capabilities that can be

pulled from to support future autonomous systems

programs such as Next Generation Combat Vehicle

(NGCV) and Combat Vehicle Robotics (CoVeR).

AMAS components that relate to multi-vehicle

coordination and leader/follower behaviors help to

fill capability gaps of RTK since it has always been

used on single vehicle systems. A long-term goal

of RTK is to help define an open architecture for

autonomous ground systems. By integrating new

components into RTK, the interface definitions are

re-evaluated and redefined, making them more

robust and allowing the architecture to

accommodate a wider array of components.

2. INTEGRATION PROCESS
The integration of AMAS into RTK has been an

ongoing effort for several years. The scope of the

effort began with a small team trying to perform a

loose integration and has grown to a larger team

trying to achieve a fully integrated solution

2.1. Early Efforts / BWASK Integration
Early efforts focused on simply controlling an

AMAS By-Wire Active Safety Kit (BWASK)

using the RTK Autonomy Kit (Akit). This work

primarily focused on developing the set of control

and status interfaces between the two systems,

without modifying the behavior of either system.

Within the AMAS Akit, a set of Neutral Message

Language (NML) message buffers were used in a

polling model to share data between modules,

similar to how ROS topics are used for

communication between nodes. The Autonomy

Gateway module within the AMAS Akit performs

serialization of these NML messages and uses a

combination of Ethernet and Controller Area

Network (CAN) interfaces to handle sending and

receiving data between the Akit and BWASK.

Rather than recreating the code for managing these

low level interfaces, the Autonomy Gateway and

NML buffer modules were utilized by RTK and a

series of NML wrapper classes were created which

converted data between ROS topics and NML

buffers. Some of the high-level support classes for

interfacing with the NML buffers were taken from

AMAS to simplify the development of these

wrapper nodes.

Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Integration of the Autonomous Mobility Appliqué System into the Robotic Technology Kernel. Pirozzo, et.al.

Page 3 of 8

Figure 1: Initial approach to integration using Autonomy

Gateway Wrapper node.

Once the wrapper nodes were created, this

provided the means for passing data between the

RTK Akit and the BWASK; however, there were

still a number of issues preventing the two systems

from cooperating with one another. For example,

even though the path following commands were

being sent to the BWASK using the correct

message format, the way that RTK generates the

shape of its paths did not meet the strict list of

requirements that the BWASK path executor

expected, resulting in paths often being treated as

invalid data. Other issues occurred within the RTK

Vehicle Management System (VMS), which

performs checks on the system’s health and status

data to ensure that requirements are met when

executing autonomous behaviors. To account for

the variations in available status information, new

configurations had to be added to the VMS to allow

for different or missing status information. Lastly,

the BWASK provides a long list of Built-In-Tests

(BITs) that continuously monitor the system for

errors, similar to the VMS. When something is

wrong, these BITs will trigger persistent errors that

require a full reset of the system to be cleared.

Unfortunately, many of these BITs seemed to be

intermittent and were not issues that were able to be

resolved, making them an inconvenience that

caused frequent interruption to testing and

development.

Once the various inconsistencies between the

RTK and AMAS systems were resolved, it was

possible to successfully control the BWASK using

RTK behaviors such as teleoperation and waypoint

following. This was the primary goal for the initial

phase of integration; however, work continued to

further integrate capabilities. The next priority was

to utilize Light Detection and Ranging (LIDAR)

and Radio Detection and Ranging (RADAR) data

available through the BWASK to populate the RTK

world model. It was possible to capture the data

from the sensors; however, since RTK had minimal

experience with processing Ibeo LIDAR or Delphi

RADAR data, the results were very noisy and not

very useful for doing obstacle detection and

obstacle avoidance (ODOA). The last goal was to

harness the AMAS Akit modules for performing

basic leader/follower behaviors. There was some

initial success with performing leader detection;

however, the work required to pass that data to the

follower and execute the estimated trajectories was

never completed. Shortly after this work began, the

team transitioned their efforts to supporting the

Coalition Assured Autonomous Resupply program

and took a different approach to Akit integration.

2.2. Later Efforts / Initial Akit Integration
As the CAAR program started, the integration

team grew to include support from Lockheed

Martin, allowing for tighter integration between

AMAS and RTK. This effort shifted the focus from

controlling only the BWASK and making use of its

sensor data, to integrating AMAS Akit capabilities,

in particular those features which would allow RTK

to perform leader/follower behaviors. This effort

was still not focused on changing any of the

behaviors, but rather on developing the interfaces

between RTK Akit components and AMAS Akit

components so that they could coexist within one

system.

To demonstrate tighter integration, RTK and

AMAS were compared side by side and modules

that provided duplicate capabilities were identified

as places to focus efforts. The overall goal was to

integrate novel capabilities from AMAS into RTK,

Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Integration of the Autonomous Mobility Appliqué System into the Robotic Technology Kernel. Pirozzo, et.al.

Page 4 of 8

with a priority of using RTK modules whenever

possible and using AMAS components to fill

specific capability gaps. After performing the

comparison, it was determined that RTK

components would be used for behavior

management, world modeling, and system health

monitoring, while AMAS components would be

used for hardware interfaces, inter-vehicle

communication, leader detection and tracking,

convoy trajectory generation, and convoy gap

control. The interfaces between the two systems

are shown in Figure 2 below.

Figure 2: Interfaces between AMAS (top) and RTK (bottom)

modules for convoy behaviors

It was decided that the quickest, easiest, and

lowest risk way to allow RTK and AMAS to

communicate was to continue the approach of

developing wrapper classes that would convert

messages between NML and ROS, similar to what

was done for the Autonomy Gateway, but applied

throughout the entire system. These wrappers

would perform any necessary translation between

RTK and AMAS message types, and minimal

changes would be required to the AMAS autonomy

modules. This approach was a much larger effort

than expected, and the resulting code was overly

complex, making it very difficult to work with.

Seeing the results of this effort, it was clear that

the use of wrappers would not support the desired

level of integration between RTK and AMAS, and

further redesign was required.

2.3. Current Efforts / Full Akit Integration
The current approach to integrating AMAS into

RTK involved heavily refactoring the AMAS

software to better fit within the RTK system design.

The main tasks required converting NML interfaces

to ROS, decomposing subsystems into modular

components, and updating interfaces to adopt RTK

standard message formats.

2.3.1 ROS Conversion

The full integration of the AMAS codebase into

the RTK framework began with a module-by-

module conversion of the AMAS build system. The

migration from SCons, AMAS’s previous Python-

based build system, to catkin, ROS’s official

CMake-based build system, was a relatively

straightforward conversion process with few

exceptions. For example, several Python build

scripts had been extended to perform complex

tasks, such as code generation or compile-time

decision making, that could not be easily ported to

CMake and had to be carefully refactored out. Each

AMAS submodule was restructured and catkinized

following ROS style guidelines and naming

conventions, and code repositories were forked to

mitigate possible conflicts with other development

projects.

In the second stage of conversion, custom ROS

messages were created to replace every NML

message class identified as a part of the AMAS

codebase. Because NML messages are defined by

C++ classes, they typically contain data, in the form

of variables, and methods, which can be applied to

this data; ROS messages, on the other hand, may

only contain data. Therefore, care was taken to

ensure a one-to-one translation of NML message

data to ROS message data whenever possible to

simplify the subsequent message replacement

process within the source code itself. If necessary,

the NML message methods were retained in the

form of generic helper utilities that could later be

Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Integration of the Autonomous Mobility Appliqué System into the Robotic Technology Kernel. Pirozzo, et.al.

Page 5 of 8

applied to the ROS messages to replicate the

previous NML functionality.

For the third stage, ROS publishers and

subscribers were inserted into the AMAS codebase

in parallel with existing method calls that read

from, or wrote to, the NML shared memory buffers,

using the newly defined ROS messages as payload.

Note that the NML buffer calls were left in place as

a form of scaffolding to support testing during the

ROS transition period, ensuring inter-

communication between modules whether or not

they had been converted to ROS. A major challenge

during this stage was adapting the transitory nature

of ROS messaging to support the storage-like

functionality of NML buffers – several key

functions of the AMAS codebase were written with

the expectation of on-demand data availability and

automatic data staleness tracking, therefore ROS’s

event-driven callbacks had to be restructured to

support this need.

In the final stage of ROS conversion, preprocessor

directives were inserted throughout the AMAS

codebase to wrap all NML-dependent blocks of

code, giving the developer the ability to remove all

NML-related code at compile time by setting a

CMake compiler flag to TRUE. Following the

standard set throughout the rest of the conversion

process, this compile-time mechanism provided a

fine degree of control over which portions of the

codebase were exclusively using ROS and ensured

a maximum amount of reversibility for identifying

errors or bugs inadvertently introduced during the

conversion.

2.3.2 Refactoring AMAS

After updating the AMAS codebase to be ROS-

compatible, major remaining conversion tasks

included the modification of program control flow

(switching from procedural to event-driven), the

standardization of vehicle-specific parameters

(using ROS’s shared network parameter server),

and the unification of vehicle coordinate transforms

into a single ROS tf tree structure (using Unified

Robot Description Format (URDF) files). As with

the previous effort, conversion was performed on a

per-module basis to ensure that each module could

be tested independently, while the integrity of the

full AMAS codebase was maintained to ensure that

the entire system could be evaluated at any time.

The main challenge of this refactoring process

was deciding how to best preserve the high-level

autonomy behaviors of AMAS while

simultaneously migrating toward an RTK-style

flow of control. The primary goal was to ensure that

the overall periodicity of the refactored system was

driven by the rate of the incoming sensor data.

Approximate synchronization was achieved using

ROS’s message_filters library, which unites all

sensors required for a given processing decision

into a single event-driven callback method, then

triggers the method once all required sensor data

has arrived. Additional enhancements included the

decomposition of monolithic, end-to-end AMAS

services into modular components that better match

RTK’s functional layout, the removal of the

custom-built, multi-threaded AMAS data servers

(replaced by a handful of memory-sharing ROS

nodelets), and the creation of per-node launch files

to support standalone running and testing of

individual components.

2.3.3 RTK Integration

The team began by identifying core functionality

and the modules in which that individual

functionality resided in AMAS that needed to be

integrated. At the same time the team identified the

modules within RTK where the AMAS

functionality would need to be integrated. From

this effort, the team created a map of the new

architecture depicting the grouping, interfaces and

interactions of the integrated modules.

Figure 3(A) illustrates the completed integration

of AMAS into the RTK framework as it interfaces

with the AMAS BWASK. Figure 3(B) illustrates a

Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Integration of the Autonomous Mobility Appliqué System into the Robotic Technology Kernel. Pirozzo, et.al.

Page 6 of 8

variation on this integration with modifications to

interface with the IDS drive-by-wire kit.

Figure 3: Variations of the RTK architecture with AMAS

fully integrated: A) RTK operating on-board military

transport trucks, interfacing with the AMAS BWASK; B)

RTK operating on-board a HMMWV, interfacing with the

IDS drive-by-wire actuation system.

3. RESULTS
The integration of AMAS into RTK has been a

challenging but rewarding effort and has resulted in

a more cohesive and modular design than was

previously available in the standalone AMAS

system. It provides flexibility by utilizing the

AMAS convoy capabilities and sensors on other

similarly-equipped vehicles to be able to

interoperate in heterogenous vehicle convoy

resupply scenarios and missions. We will soon be

demonstrating a 6 vehicle convoy with two

LMTVs, two HX-60, and two HMMWVs working

together to perform the capstone defensive

formation demonstration at Camp Grayling, MI.

The RTK architecture provides a common

framework for integrating new capabilities and

modes into autonomous ground vehicle systems.

RTK itself is built on top of ROS which also

provides a very modular and flexible architecture

for the development of loosely coupled modules

communicating with each other for a common

purpose. Integrating the AMAS autonomy kit

functionality into ROS, and specifically RTK,

provides new multi-vehicle and convoy capabilities

that did not exist in RTK prior to this effort. New

modes and multi-vehicle data sharing capabilities

have been added to support the convoy operations.

These can be utilized for other multi-vehicle modes

and data sharing applications and capabilities (i.e.

obstacle sharing).

There were several challenges that the team had

to overcome. First, working in a distributed team

with multiple co-contractors and government

partners required a method for sharing the software

repositories and information. We decided to utilize

the Defense Intelligence Information Enterprise

(DI2E) framework to provide collaboration

capability. This can be difficult to get access to as

it is government controlled and requires special

credentials, but does provide a stable method of

sharing the software once everyone is approved.

DI2E is able to host all the Git repositories for both

the RTK architecture and AMAS software and

provides collaborative tools available for the team

to keep everything up to date and track issues and

tasks. In the future, we would like to utilize the

continuous integration capabilities of DI2E to

ensure that the software integrity is maintained on

the site.

Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Integration of the Autonomous Mobility Appliqué System into the Robotic Technology Kernel. Pirozzo, et.al.

Page 7 of 8

Second, vehicle hardware-related development

and integration efforts can be very challenging.

Difficulties can arise with hardware anomalies or

software bugs that can be difficult to pinpoint the

source and develop a solution for without extensive

time and effort to track down. Combined with

multiple vehicle types, this adds an additional level

of difficulty with possible vehicle-specific

differences. RTK and AMAS are looking to

minimize this effort by isolating the hardware

interfaces into standard ROS and RTK messages so

the hardware and vehicle-specific elements can be

encapsulated in these interface nodes and minimize

the impact on the rest of the architecture. AMAS

provides an Autonomy Gateway, Power, and

Sensor interface layers to isolate the BWASK-

specialized hardware and safety critical software

from the RTK autonomy kit functions.

RTK/AMAS has also developed ROS launch

configurations for vehicles that have limited sensor

capabilities or are not equipped with the full AMAS

sensor suite. For instance, if a vehicle configuration

does not have a road-following camera and Ibeo

LIDAR, the RTK architecture will look at

generating the standard imagery and 3D point cloud

data from other available sensors such as stereo

cameras and Velodyne LIDAR. This flexibility will

make the architecture more adaptable to a variety

of vehicles and missions, especially with the

incorporation of the multi-vehicle capability that

AMAS provides.

Third, we utilized the ANVEL simulation

environment with the RTK/AMAS hybrid

architecture to provide a testbed for incorporating

AMAS functions into RTK in a realistic runtime

environment without requiring physical vehicles

and the logistics of running those vehicles in

convoy configurations. This implementation has its

own challenges, but it does provide a mechanism to

evaluate the RTK/AMAS system in a reasonable

manner before running it on physical vehicles. The

ANVEL simulation has some limitations that make

it difficult to do full integration testing before

moving to the vehicles, especially in raw sensor

data. AMAS utilizes several types of sensors such

as cameras, LIDAR, and RADAR. Currently,

ANVEL can simulate only a single LIDAR, but

most of RTK/AMAS vehicles are equipped with at

least three LIDAR (two front-facing and one rear-

facing). Additionally, ANVEL does not currently

provide a simulator for ultra-wide band antennas

(UWBs) or RADAR, and these sensors are utilized

by AMAS for range and collision information.

Therefore, the utility of the ANVEL simulation

environment can be somewhat limited for full

system testing. However, it is very useful for

running AMAS modules and capabilities in RTK

architecture and checking out individual module

functions and interfaces.

Despite all these challenges, the team has been

successful in bringing all of the AMAS capabilities

into the RTK architecture and demonstrating these

on multiple different vehicles. These AMAS

capabilities will provide the addition of local

perception-based road following and vehicle

tracking, multi-vehicle coordination and data

sharing, and adding an overall comprehensive

convoy operations capability to RTK.

Figure 4: HMMWVs, LMTVs and HX60 vehicles used in

CAAR demonstration.

4. CONCLUSION
The joint Government and industry integration

team has completed much work towards the goal of

integrating AMAS into RTK. The team identified

core functionality and the modules in which that

individual functionality resided in AMAS that

needed to be integrated. Simualtaneously, the team

Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Integration of the Autonomous Mobility Appliqué System into the Robotic Technology Kernel. Pirozzo, et.al.

Page 8 of 8

identified the modules within RTK where the

AMAS functionality would need to be integrated.

From this effort, the team created a map of the new

architecture depicting the grouping, interfaces, and

interactions of the integrated modules. The team

then focused on removing the Neutral Message

Language (NML) scaffolding used in AMAS,

setting up the ROS messaging infrastructure that

would take its place to support data passage

between modules, and establishing the format and

extent of the content of the messaging that had to

be passed among the various modules. The team

then examined which modules would be directly

transferred into RTK almost whole, which modules

would need to be carefully integrated piecemeal

into existing RTK modules, and which modules

could be almost entirely deprecated. For the

piecemeal transfer of multiple functions within a

given module, the module had to be decomposed

into separate components so they could be

individually integrated into the appropriate location

in the RTK architecture. Other supporting tasks

included conversion of AMAS data logging into

ROS logging. Once the planning was completed,

the team began the actual conversion of the module

code.

Integration and test events to date show the team

is on the right path. Testing of the modules

converted to date resulted in initial functionality.

Next steps include the completion of the

development of the remaining modules, integration

with the rest of RTK, and full system testing. Once

the team completes these tasks and formally merges

the code, full functionality will be achieved. The

result will be showcased in an RTK architecture

demonstration using a six vehicle convoy as part of

the CAAR program targeted for later in 2019.

After the culmination of this RTK conversion

work at the 2019 demonstration, we plan to look at

additional improvements. GVSC plans to look at

how to make AMAS modules more functional for

typical RTK systems which do not have the full

suite of sensor hardware that AMAS currently

supports. Additionally, GVSC is in the process of

beginning to plan out the integration of other

software systems into RTK, such as Autonomous

Ground Resupply (AGR).

Lockheed Martin has continued to grow its

industry leading Autonomy expertise by executing

this RTK development. GVSC plans to continue to

grow RTK developer teams by reaching out to and

including universities and other research

organizations in future developments.

The impact of this conversion effort will help

RTK to become the de-facto autonomy library for

Unmanned Ground Vehicles (UGVs). It will prove

out not only that this type of integration is indeed

possible, it will also provide lessons learned for

future similar efforts integrating code on other

systems with RTK. Other ground vehicle

autonomy programs such as the Next Generation

Combat Vehicle (NGCV) and Combat Vehicle

Robotics (CoVeR) are watching the result of this

conversion. Once this work is completed, NGCV,

CoVeR, and others will be able to leverage

capabilities from both RTK and AMAS.

