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ABSTRACT 
U.S. Army Combat Capabilities Development Command (CCDC) Ground Vehicle 

Systems Center (GVSC) has been managing and developing a variety of 

autonomous systems throughout its existence.  Two of the most important from the 

past decade include the Autonomous Mobility Appliqué System (AMAS) developed 

by Lockheed Martin Corporation (LMC) and the Robotic Technology Kernel (RTK) 

developed by GVSC in collaboration with DCS Corp and Southwest Research 

Institute (SwRI).  Rather than continuing to develop and maintain two separate 

autonomous software systems, GVSC has decided to integrate any capabilities that 

were unique to AMAS into RTK and devote efforts to developing RTK going 

forward.  The goal of integrating AMAS into RTK is to leverage the best features 

of each system.  The process of this integration involves multiple steps.  This paper 

describes the historical and current efforts involved in the integration of AMAS into 

RTK. 
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1. INTRODUCTION 
The U.S. Army Combat Capabilities 

Development Command (CCDC) Ground Vehicle 

Systems Center (GVSC) has been managing and 

developing a variety of autonomous systems 

throughout its existence.  Two of the most 

important from the past decade include the 

Autonomous Mobility Appliqué System (AMAS) 

developed by Lockheed Martin Corporation (LMC) 

and the Robotic Technology Kernel (RTK) 

developed by GVSC in collaboration with DCS 

Corp and Southwest Research Institute (SwRI).  

Rather than continuing to develop and maintain two 

separate autonomous software systems, GVSC has 

decided to integrate any capabilities that were 

unique to AMAS into RTK and devote efforts to 

developing RTK going forward. 
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AMAS has focused on developing autonomous 

driving capabilities for logistics vehicles.  One 

aspect of this is to modernize military vehicles by 

providing driver warning and assist features found 

on most consumer vehicles such as blind spot 

detection, cruise control, lane keeping, and 

collision mitigation braking.  In addition to these 

driver assist features, AMAS provides autonomous 

driving capabilities such as teleoperation, waypoint 

following, and convoy vehicle following.  The 

software and hardware have undergone thorough 

testing, giving AMAS a high level of reliability.   

 

RTK has been focused on developing new 

perception and autonomous navigation capabilities 

for smaller, more mobile vehicles.  The software is 

built upon the open source Robot Operating System 

(ROS) which provides simple communication 

mechanisms between software components and 

gives developers tools for monitoring and 

diagnosing the state of the system.  ROS also 

promotes modular design allowing for more 

flexibility and reusability of individual software 

components.  RTK has demonstrated this by 

reusing software across many different vehicles, 

supporting many different programs with varying 

objectives, and a quick turnaround time to integrate 

new capabilities. 

 

The goal of integrating AMAS into RTK is to 

leverage the best features of each system, creating 

a library of compatible capabilities that can be 

pulled from to support future autonomous systems 

programs such as Next Generation Combat Vehicle 

(NGCV) and Combat Vehicle Robotics (CoVeR).  

AMAS components that relate to multi-vehicle 

coordination and leader/follower behaviors help to 

fill capability gaps of RTK since it has always been 

used on single vehicle systems.  A long-term goal 

of RTK is to help define an open architecture for 

autonomous ground systems.  By integrating new 

components into RTK, the interface definitions are 

re-evaluated and redefined, making them more 

robust and allowing the architecture to 

accommodate a wider array of components. 

 

2. INTEGRATION PROCESS 
The integration of AMAS into RTK has been an 

ongoing effort for several years.  The scope of the 

effort began with a small team trying to perform a 

loose integration and has grown to a larger team 

trying to achieve a fully integrated solution 

 

2.1. Early Efforts / BWASK Integration 
Early efforts focused on simply controlling an 

AMAS By-Wire Active Safety Kit (BWASK) 

using the RTK Autonomy Kit (Akit).  This work 

primarily focused on developing the set of control 

and status interfaces between the two systems, 

without modifying the behavior of either system.  

Within the AMAS Akit, a set of Neutral Message 

Language (NML) message buffers were used in a 

polling model to share data between modules, 

similar to how ROS topics are used for 

communication between nodes.  The Autonomy 

Gateway module within the AMAS Akit performs 

serialization of these NML messages and uses a 

combination of Ethernet and Controller Area 

Network (CAN) interfaces to handle sending and 

receiving data between the Akit and BWASK.  

Rather than recreating the code for managing these 

low level interfaces, the Autonomy Gateway and 

NML buffer modules were utilized by RTK and a 

series of NML wrapper classes were created which 

converted data between ROS topics and NML 

buffers.  Some of the high-level support classes for 

interfacing with the NML buffers were taken from 

AMAS to simplify the development of these 

wrapper nodes. 
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Figure 1:  Initial approach to integration using Autonomy 

Gateway Wrapper node. 

 

Once the wrapper nodes were created, this 

provided the means for passing data between the 

RTK Akit and the BWASK; however, there were 

still a number of issues preventing the two systems 

from cooperating with one another.  For example, 

even though the path following commands were 

being sent to the BWASK using the correct 

message format, the way that RTK generates the 

shape of its paths did not meet the strict list of 

requirements that the BWASK path executor 

expected, resulting in paths often being treated as 

invalid data.  Other issues occurred within the RTK 

Vehicle Management System (VMS), which 

performs checks on the system’s health and status 

data to ensure that requirements are met when 

executing autonomous behaviors.  To account for 

the variations in available status information, new 

configurations had to be added to the VMS to allow 

for different or missing status information.  Lastly, 

the BWASK provides a long list of Built-In-Tests 

(BITs) that continuously monitor the system for 

errors, similar to the VMS.  When something is 

wrong, these BITs will trigger persistent errors that 

require a full reset of the system to be cleared.  

Unfortunately, many of these BITs seemed to be 

intermittent and were not issues that were able to be 

resolved, making them an inconvenience that 

caused frequent interruption to testing and 

development. 

 

Once the various inconsistencies between the 

RTK and AMAS systems were resolved, it was 

possible to successfully control the BWASK using 

RTK behaviors such as teleoperation and waypoint 

following.  This was the primary goal for the initial 

phase of integration; however, work continued to 

further integrate capabilities.  The next priority was 

to utilize Light Detection and Ranging (LIDAR) 

and Radio Detection and Ranging (RADAR) data 

available through the BWASK to populate the RTK 

world model.  It was possible to capture the data 

from the sensors; however, since RTK had minimal 

experience with processing Ibeo LIDAR or Delphi 

RADAR data, the results were very noisy and not 

very useful for doing obstacle detection and 

obstacle avoidance (ODOA).  The last goal was to 

harness the AMAS Akit modules for performing 

basic leader/follower behaviors.  There was some 

initial success with performing leader detection; 

however, the work required to pass that data to the 

follower and execute the estimated trajectories was 

never completed.  Shortly after this work began, the 

team transitioned their efforts to supporting the 

Coalition Assured Autonomous Resupply program 

and took a different approach to Akit integration. 

 

2.2. Later Efforts / Initial Akit Integration 
As the CAAR program started, the integration 

team grew to include support from Lockheed 

Martin, allowing for tighter integration between 

AMAS and RTK.  This effort shifted the focus from 

controlling only the BWASK and making use of its 

sensor data, to integrating AMAS Akit capabilities, 

in particular those features which would allow RTK 

to perform leader/follower behaviors.  This effort 

was still not focused on changing any of the 

behaviors, but rather on developing the interfaces 

between RTK Akit components and AMAS Akit 

components so that they could coexist within one 

system. 

 

To demonstrate tighter integration, RTK and 

AMAS were compared side by side and modules 

that provided duplicate capabilities were identified 

as places to focus efforts.  The overall goal was to 

integrate novel capabilities from AMAS into RTK, 
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with a priority of using RTK modules whenever 

possible and using AMAS components to fill 

specific capability gaps.  After performing the 

comparison, it was determined that RTK 

components would be used for behavior 

management, world modeling, and system health 

monitoring, while AMAS components would be 

used for hardware interfaces, inter-vehicle 

communication, leader detection and tracking, 

convoy trajectory generation, and convoy gap 

control.  The interfaces between the two systems 

are shown in Figure 2 below. 

 

 
Figure 2:  Interfaces between AMAS (top) and RTK (bottom) 

modules for convoy behaviors 

 

It was decided that the quickest, easiest, and 

lowest risk way to allow RTK and AMAS to 

communicate was to continue the approach of 

developing wrapper classes that would convert 

messages between NML and ROS, similar to what 

was done for the Autonomy Gateway, but applied 

throughout the entire system.  These wrappers 

would perform any necessary translation between 

RTK and AMAS message types, and minimal 

changes would be required to the AMAS autonomy 

modules.  This approach was a much larger effort 

than expected, and the resulting code was overly 

complex, making it very difficult to work with.   

 

Seeing the results of this effort, it was clear that 

the use of wrappers would not support the desired 

level of integration between RTK and AMAS, and 

further redesign was required. 

 

2.3. Current Efforts / Full Akit Integration 
The current approach to integrating AMAS into 

RTK involved heavily refactoring the AMAS 

software to better fit within the RTK system design.  

The main tasks required converting NML interfaces 

to ROS, decomposing subsystems into modular 

components, and updating interfaces to adopt RTK 

standard message formats. 

2.3.1 ROS Conversion 

The full integration of the AMAS codebase into 

the RTK framework began with a module-by-

module conversion of the AMAS build system. The 

migration from SCons, AMAS’s previous Python-

based build system, to catkin, ROS’s official 

CMake-based build system, was a relatively 

straightforward conversion process with few 

exceptions. For example, several Python build 

scripts had been extended to perform complex 

tasks, such as code generation or compile-time 

decision making, that could not be easily ported to 

CMake and had to be carefully refactored out. Each 

AMAS submodule was restructured and catkinized 

following ROS style guidelines and naming 

conventions, and code repositories were forked to 

mitigate possible conflicts with other development 

projects. 

 

In the second stage of conversion, custom ROS 

messages were created to replace every NML 

message class identified as a part of the AMAS 

codebase. Because NML messages are defined by 

C++ classes, they typically contain data, in the form 

of variables, and methods, which can be applied to 

this data; ROS messages, on the other hand, may 

only contain data. Therefore, care was taken to 

ensure a one-to-one translation of NML message 

data to ROS message data whenever possible to 

simplify the subsequent message replacement 

process within the source code itself. If necessary, 

the NML message methods were retained in the 

form of generic helper utilities that could later be 
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applied to the ROS messages to replicate the 

previous NML functionality. 

 

For the third stage, ROS publishers and 

subscribers were inserted into the AMAS codebase 

in parallel with existing method calls that read 

from, or wrote to, the NML shared memory buffers, 

using the newly defined ROS messages as payload. 

Note that the NML buffer calls were left in place as 

a form of scaffolding to support testing during the 

ROS transition period, ensuring inter-

communication between modules whether or not 

they had been converted to ROS. A major challenge 

during this stage was adapting the transitory nature 

of ROS messaging to support the storage-like 

functionality of NML buffers – several key 

functions of the AMAS codebase were written with 

the expectation of on-demand data availability and 

automatic data staleness tracking, therefore ROS’s 

event-driven callbacks had to be restructured to 

support this need. 

 

In the final stage of ROS conversion, preprocessor 

directives were inserted throughout the AMAS 

codebase to wrap all NML-dependent blocks of 

code, giving the developer the ability to remove all 

NML-related code at compile time by setting a 

CMake compiler flag to TRUE. Following the 

standard set throughout the rest of the conversion 

process, this compile-time mechanism provided a 

fine degree of control over which portions of the 

codebase were exclusively using ROS and ensured 

a maximum amount of reversibility for identifying 

errors or bugs inadvertently introduced during the 

conversion. 

2.3.2 Refactoring AMAS 

After updating the AMAS codebase to be ROS-

compatible, major remaining conversion tasks 

included the modification of program control flow 

(switching from procedural to event-driven), the 

standardization of vehicle-specific parameters 

(using ROS’s shared network parameter server), 

and the unification of vehicle coordinate transforms 

into a single ROS tf tree structure (using Unified 

Robot Description Format (URDF) files). As with 

the previous effort, conversion was performed on a 

per-module basis to ensure that each module could 

be tested independently, while the integrity of the 

full AMAS codebase was maintained to ensure that 

the entire system could be evaluated at any time. 

 

The main challenge of this refactoring process 

was deciding how to best preserve the high-level 

autonomy behaviors of AMAS while 

simultaneously migrating toward an RTK-style 

flow of control. The primary goal was to ensure that 

the overall periodicity of the refactored system was 

driven by the rate of the incoming sensor data. 

Approximate synchronization was achieved using 

ROS’s message_filters library, which unites all 

sensors required for a given processing decision 

into a single event-driven callback method, then 

triggers the method once all required sensor data 

has arrived. Additional enhancements included the 

decomposition of monolithic, end-to-end AMAS 

services into modular components that better match 

RTK’s functional layout, the removal of the 

custom-built, multi-threaded AMAS data servers 

(replaced by a handful of memory-sharing ROS 

nodelets), and the creation of per-node launch files 

to support standalone running and testing of 

individual components. 

2.3.3 RTK Integration 

The team began by identifying core functionality 

and the modules in which that individual 

functionality resided in AMAS that needed to be 

integrated.  At the same time the team identified the 

modules within RTK where the AMAS 

functionality would need to be integrated.  From 

this effort, the team created a map of the new 

architecture depicting the grouping, interfaces and 

interactions of the integrated modules. 
 

Figure 3(A) illustrates the completed integration 

of AMAS into the RTK framework as it interfaces 

with the AMAS BWASK. Figure 3(B) illustrates a 
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variation on this integration with modifications to 

interface with the IDS drive-by-wire kit. 

 
 

 
 

 

Figure 3:  Variations of the RTK architecture with AMAS 

fully integrated: A) RTK operating on-board military 

transport trucks, interfacing with the AMAS BWASK; B) 

RTK operating on-board a HMMWV, interfacing with the 

IDS drive-by-wire actuation system. 

 

3. RESULTS 
The integration of AMAS into RTK has been a 

challenging but rewarding effort and has resulted in 

a more cohesive and modular design than was 

previously available in the standalone AMAS 

system.  It provides flexibility by utilizing the 

AMAS convoy capabilities and sensors on other 

similarly-equipped vehicles to be able to 

interoperate in heterogenous vehicle convoy 

resupply scenarios and missions. We will soon be 

demonstrating a 6 vehicle convoy with two 

LMTVs, two HX-60, and two HMMWVs working 

together to perform the capstone defensive 

formation demonstration at Camp Grayling, MI. 

The RTK architecture provides a common 

framework for integrating new capabilities and 

modes into autonomous ground vehicle systems. 

RTK itself is built on top of ROS which also 

provides a very modular and flexible architecture 

for the development of loosely coupled modules 

communicating with each other for a common 

purpose. Integrating the AMAS autonomy kit 

functionality into ROS, and specifically RTK, 

provides new multi-vehicle and convoy capabilities 

that did not exist in RTK prior to this effort. New 

modes and multi-vehicle data sharing capabilities 

have been added to support the convoy operations. 

These can be utilized for other multi-vehicle modes 

and data sharing applications and capabilities (i.e. 

obstacle sharing).  

 

There were several challenges that the team had 

to overcome.  First, working in a distributed team 

with multiple co-contractors and government 

partners required a method for sharing the software 

repositories and information. We decided to utilize 

the Defense Intelligence Information Enterprise 

(DI2E) framework to provide collaboration 

capability. This can be difficult to get access to as 

it is government controlled and requires special 

credentials, but does provide a stable method of 

sharing the software once everyone is approved. 

DI2E is able to host all the Git repositories for both 

the RTK architecture and AMAS software and 

provides collaborative tools available for the team 

to keep everything up to date and track issues and 

tasks. In the future, we would like to utilize the 

continuous integration capabilities of DI2E to 

ensure that the software integrity is maintained on 

the site. 
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Second, vehicle hardware-related development 

and integration efforts can be very challenging. 

Difficulties can arise with hardware anomalies or 

software bugs that can be difficult to pinpoint the 

source and develop a solution for without extensive 

time and effort to track down. Combined with 

multiple vehicle types, this adds an additional level 

of difficulty with possible vehicle-specific 

differences. RTK and AMAS are looking to 

minimize this effort by isolating the hardware 

interfaces into standard ROS and RTK messages so 

the hardware and vehicle-specific elements can be 

encapsulated in these interface nodes and minimize 

the impact on the rest of the architecture. AMAS 

provides an Autonomy Gateway, Power, and 

Sensor interface layers to isolate the BWASK-

specialized hardware and safety critical software 

from the RTK autonomy kit functions. 

RTK/AMAS has also developed ROS launch 

configurations for vehicles that have limited sensor 

capabilities or are not equipped with the full AMAS 

sensor suite. For instance, if a vehicle configuration 

does not have a road-following camera and Ibeo 

LIDAR, the RTK architecture will look at 

generating the standard imagery and 3D point cloud 

data from other available sensors such as stereo 

cameras and Velodyne LIDAR. This flexibility will 

make the architecture more adaptable to a variety 

of vehicles and missions, especially with the 

incorporation of the multi-vehicle capability that 

AMAS provides. 

 

Third, we utilized the ANVEL simulation 

environment with the RTK/AMAS hybrid 

architecture to provide a testbed for incorporating 

AMAS functions into RTK in a realistic runtime 

environment without requiring physical vehicles 

and the logistics of running those vehicles in 

convoy configurations. This implementation has its 

own challenges, but it does provide a mechanism to 

evaluate the RTK/AMAS system in a reasonable 

manner before running it on physical vehicles. The 

ANVEL simulation has some limitations that make 

it difficult to do full integration testing before 

moving to the vehicles, especially in raw sensor 

data. AMAS utilizes several types of sensors such 

as cameras, LIDAR, and RADAR. Currently, 

ANVEL can simulate only a single LIDAR, but 

most of RTK/AMAS vehicles are equipped with at 

least three LIDAR (two front-facing and one rear-

facing). Additionally, ANVEL does not currently 

provide a simulator for ultra-wide band antennas 

(UWBs) or RADAR, and these sensors are utilized 

by AMAS for range and collision information. 

Therefore, the utility of the ANVEL simulation 

environment can be somewhat limited for full 

system testing. However, it is very useful for 

running AMAS modules and capabilities in RTK 

architecture and checking out individual module 

functions and interfaces.  

 

Despite all these challenges, the team has been 

successful in bringing all of the AMAS capabilities 

into the RTK architecture and demonstrating these 

on multiple different vehicles. These AMAS 

capabilities will provide the addition of local 

perception-based road following and vehicle 

tracking, multi-vehicle coordination and data 

sharing, and adding an overall comprehensive 

convoy operations capability to RTK. 

 

 
Figure 4:  HMMWVs, LMTVs and HX60 vehicles used in 

CAAR demonstration. 

 

4. CONCLUSION 
The joint Government and industry integration 

team has completed much work towards the goal of 

integrating AMAS into RTK.  The team identified 

core functionality and the modules in which that 

individual functionality resided in AMAS that 

needed to be integrated.  Simualtaneously, the team 
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identified the modules within RTK where the 

AMAS functionality would need to be integrated.  

From this effort, the team created a map of the new 

architecture depicting the grouping, interfaces, and 

interactions of the integrated modules.  The team 

then focused on removing the Neutral Message 

Language (NML) scaffolding used in AMAS, 

setting up the ROS messaging infrastructure that 

would take its place to support data passage 

between modules, and establishing the format and 

extent of the content of the messaging that had to 

be passed among the various modules.  The team 

then examined which modules would be directly 

transferred into RTK almost whole, which modules 

would need to be carefully integrated piecemeal 

into existing RTK modules, and which modules 

could be almost entirely deprecated.  For the 

piecemeal transfer of multiple functions within a 

given module, the module had to be decomposed 

into separate components so they could be 

individually integrated into the appropriate location 

in the RTK architecture.  Other supporting tasks 

included conversion of AMAS data logging into 

ROS logging.  Once the planning was completed, 

the team began the actual conversion of the module 

code.   

 

Integration and test events to date show the team 

is on the right path.  Testing of the modules 

converted to date resulted in initial functionality. 

 

Next steps include the completion of the 

development of the remaining modules, integration 

with the rest of RTK, and full system testing.  Once 

the team completes these tasks and formally merges 

the code, full functionality will be achieved.  The 

result will be showcased in an RTK architecture 

demonstration using a six vehicle convoy as part of 

the CAAR program targeted for later in 2019. 

 

After the culmination of this RTK conversion 

work at the 2019 demonstration, we plan to look at 

additional improvements.  GVSC plans to look at 

how to make AMAS modules more functional for 

typical RTK systems which do not have the full 

suite of sensor hardware that AMAS currently 

supports.  Additionally, GVSC is in the process of 

beginning to plan out the integration of other 

software systems into RTK, such as Autonomous 

Ground Resupply (AGR). 

 

Lockheed Martin has continued to grow its 

industry leading Autonomy expertise by executing 

this RTK development.  GVSC plans to continue to 

grow RTK developer teams by reaching out to and 

including universities and other research 

organizations in future developments. 

 

The impact of this conversion effort will help 

RTK to become the de-facto autonomy library for 

Unmanned Ground Vehicles (UGVs).  It will prove 

out not only that this type of integration is indeed 

possible, it will also provide lessons learned for 

future similar efforts integrating code on other 

systems with RTK.  Other ground vehicle 

autonomy programs such as the Next Generation 

Combat Vehicle (NGCV) and Combat Vehicle 

Robotics (CoVeR) are watching the result of this 

conversion.  Once this work is completed, NGCV, 

CoVeR, and others will be able to leverage 

capabilities from both RTK and AMAS. 

 


